If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5u^2+20u+32=0
a = -5; b = 20; c = +32;
Δ = b2-4ac
Δ = 202-4·(-5)·32
Δ = 1040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1040}=\sqrt{16*65}=\sqrt{16}*\sqrt{65}=4\sqrt{65}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{65}}{2*-5}=\frac{-20-4\sqrt{65}}{-10} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{65}}{2*-5}=\frac{-20+4\sqrt{65}}{-10} $
| 2x(1/10)=1(1/6) | | 19m+29K=900 | | 126-w=184 | | 5x+2=0x+1 | | x-3=-5(1/2 | | 6=2x÷3 | | -7o+1=15 | | 7x-3=10x=2 | | 4(z+4)=−3(z+2)+3 | | -3x-4=6+7x | | 12.4-x=-3.7 | | -19m+29K=900 | | 19a-5a-2a+-14a=10 | | -13=-3x-50 | | 2b+1/3=b-2/4 | | 3(x+4)=5x4 | | 9w-8w=9 | | r(3+5)=11 | | 4x+3=2x+14x | | 11x-15+7x+5=180 | | 800-50x=5+34x | | 2.6x+3=10.8 | | 18=18y=18 | | 628-20x=28+55x | | 3+10=-5x-14 | | 2x+3=11) | | 2^(x)=0.0087 | | 39=8x+7 | | 13+2x=19+9x | | |6-2x|=14 | | 1.5+0.9=1.2x-1.5 | | -40=4(v-3) |